ARGONNE ANL/MCS-TM-277

NATIONAL LABORATORY

DSDP5 User Guide -
Software for Semidefinite Programming

prepared by
Mathematics and Computer Science Division
Argonne National Laboratory

Argonne National Laboratory is managed by
The University of Chicago for the U.S. Department of Energy

About Argonne National Laboratory

Argonne is managed by The University of Chicago for the U.S. Department of Energy
under contract W-31-109-Eng-38. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, lllinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available
on paper to U.S. Department of Energy and its contractors, for a processing fee, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone (865) 576-8401
fax (865) 576-5728
reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or The University of Chicago.

ANL/MCS-TM-277

DSDP5 User Guide -
Software for Semidefinite Programming

by S.J.Benson and Y.Ye

Mathematics and Computer Science Division
Technical Memorandum No.277

Argonne National Laboratory

September 2005

This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

2519 THE UNIVERSITY OF PP~ Office of

> CHICAGO ~d Science

U.S. DEPARTMENT OF ENERGY

Argonne National Laboratory is managed by
The University of Chicago for the U.S. Department of Energy

ii

Contents

Abstract 1
1 Notation 2
2 Dual-Scaling Algorithm 3
3 Standard Form 5
4 Iteration Monitor 7

5 DSDP with MATLAB 8
5.1 Semidefinite Cones e 8
5.2 LP Cones s 9
5.3 Solver Options 10
5.4 Solver Performance and Statistics 11

6 Reading SDPA Files 13

7 Applying DSDP to Graph Problems 14

8 DSDP Subroutine Library 15
8.1 Creating the Solver L 15
8.2 Semidefinite Cone e 15
83 LP Cone s 20
8.4 Applying the Solver 22
8.5 Convergence Criteria o 23
8.6 Detecting Infeasibility oL 24
8.7 Solutions and Statistics L e 24
8.8 Improving Performance L oL 26
8.9 TIteration Monitor e 27

9 PDSDP 28

10 Data Structures and Parameters 30

11 Previous Versions 33

Acknowledgments 33

References 34

iii

iv

DSDP5 User Guide - Software for
Semidefinite Programming

by
Steven J. Benson and Yinyu Ye

Abstract

DSDP implements the dual-scaling algorithm for semidefinite programming. The source
code of this interior-point solver, written entirely in ANSI C, is freely available. The solver
can be used as a subroutine library, as a function within the Matlab environment, or as
an executable that reads and writes to files. Initiated in 1997, DSDP has developed into
an efficient and robust general-purpose solver for semidefinite programming. Although the
solver is written with semidefinite programming in mind, it can also be used for linear
programming and other constraint cones.

The features of DSDP include the following;:

e a robust algorithm with a convergence proof and polynomially bounded complexity
under mild assumptions on the data,

e primal and dual solutions,

e feasible solutions when they exist or approximate certificates of infeasibity,
e initial points that can be feasible or infeasible,

e relatively low memory requirements for an interior-point method,

e sparse and low-rank data structures,

e extensibility that allows applications to customize the solver and improve its perfor-
mance,

e a subroutine library that enables it to be linked to larger applications,
e scalable performance for large problems on parallel architectures, and
e a well-documented interface and examples of its use.

The package has been used in many applications and tested for efficiency, robustness, and
ease of use. We welcome and encourage further use under the terms of the license included
in the distribution.

1 Notation

The DSDP package implements a dual-scaling algorithm to find solutions (X}, y;, S;) to linear
and semidefinite optimization problems of the form

p p
(P) inf Z<Cj’Xj> subject to Z<Ai7]'7X]'> =b, i=1,...,m, X]’ € Kj,
= =1

m m
(D) sup Zbi y; subject to ZAi,jyi +5;=0Cj, j=1,....,p, Sj€Kj.
i=1 i=1
In this formulation, b; and y; are real scalars.

For semidefinite programming, the data A4; ; and C; are symmetric matrices of dimension
n; (S™), and the cone Kj is the set of symmetric positive semidefinite matrices of the same
dimension. The inner product (C,X) := C e X := %, ,C} X}, and the symbol > (>)
means the matrix is positive (semi)definite. In linear proéramming, A; and C are vectors of
real scalars, K is the nonnegative orthant, and the inner product (C, X) is the usual vector
inner product.

More generally, users specify C;, A; ; from an inner-product space V; that intersects a
cone K. Using the notation summarized in Table 1, let the symbol A denote the linear
map A : V — R™ defined by (AX); = (4;, X); its adjoint A” : R™ — V is defined by
ATy =3 y; A;. Equivalent expressions for (P) and (D) can be written

(P) inf (C,X) subject to AX =0b, X eK,

(D) sup bTy subject to Aly+S=0C, SeK.
Formulation (P) will be referred to as the primal problem, and formulation (D) will be
referred to as the dual problem. Variables that satisfy the linear equations are called feasible,

whereas the others are called infeasible. The interior of the cone will be denoted by K, and
the interior feasible sets of (P) and (D) will be denoted by F°(P) and F°(D), respectively.

Table 1: Terms and notation for linear (LP), semidefinite (SDP), and conic programming.

Term LP SDP Conic Notation
Dimension n n >on; n
Data Space (3 C, A;) R™ Sn ie...aeV, 1%
Cone z,s >0 X,85~-0 X, SeKi1®..0K, X,ScK
Interior of Cone z,s >0 X, 5+0 X,SEKl@...@Kp X,Sek
Inner Product clx CeX > (C, X5) (C, X)
Norm E 1X 1 (S11%,%) "2 1X|
Product (2181 ... Tnsp)T X8 X151 ...0X,S5, X8
Identity Element [1...1)7 I Lo.. 8l I
Inverse [1/51...1/s,)T St S;l@...EBSp_I St
Dual Barrier > Ins; Indet S > Indet S; Indet S

2 Dual-Scaling Algorithm

This section summarizes the dual-scaling algorithm for solving (P) and (D). For simplicity,
parts of this discussion assume that the cone is a single semidefinite block, but an extension
of the algorithm to multiple blocks and other cones is relatively simple. This discussion also
assumes that the A;s are linearly independent, there exists X € F°(P), and a starting point
(y,8) € FO(D) is known. The next section discusses how DSDP generalizes the algorithm
to relax these assumptions.

It is well known that under these assumptions, both (P) and (D) have optimal solutions
X* and (y*, S*), which are characterized by the equivalent conditions that the duality gap
(X*,5%) is zero and the product X*S* is zero. Moreover, for every v > 0, there exists
a unique primal-dual feasible solution (X,,y,,S,) that satisfies the perturbed optimality
equation XS, = vI. The set of all solutions C = {(X,,,,S5,) : ¥ > 0} is known as the
central path, and C serves as the basis for path-following algorithms that solve (P) and (D).
These algorithms construct a sequence {(X,y,)} C F°(P) x F°(D) in a neighborhood of
the central path such that the duality gap (X,S) goes to zero. A scaled measure of the
duality gap that proves useful in the presentation and analysis of path-following algorithms
is (X, 8) = (X,S)/n for all (X,S) € K x K. Note that for all (X,S) € K x K, we have
w(X,S) > 0 unless XS = 0. Moreover, u(X,,S,) = v for all points (X,,y,,S,) on the
central path.

The dual-scaling algorithm applies Newton’s method to AX = b, ATy + S = C, and
X =vS~! to generate

AX +AX) = b, (1)

AT (Ay) +AS = 0, (2)

vSTIASST' 4+ AX = wSTl-X. (3)

Equations (1) - (3) will be referred to as the Newton equations; their Schur complement is
(A, S71ASTY) - (AL ST ARST)

v : : Ay=b—-vAS™t (4)
<Am7‘971A1571> <Ama‘971Am‘971>

The left-hand side of this linear system is positive definite when S € K. In this manuscript,
it will sometimes be referred to as M. DSDP computes A’y := M ~'band Ay := M~1AS~!.
For any v,

Ayy = lA’y — Ay
v

solves (4). We use the subscript to emphasize that v can be chosen after computing A’y
and A”y and that the value chosen for the primal step may be different from the value
chosen for the dual step.

Using (2),(3), and A,y, we get

X(w) = v (S + 571 ATAy)STY), (5)
which satisfies AX (v) = b. Because X (v) € K if and only if
C_AT(y_AVy) € K? (6)

DSDP applies a Cholesky factorization on (6) to test the condition. If X(v) € K, a new
upper bound

z2:=(C,X(v)) =bly+(X(),S) =b"y+v(Ay" AS™" +n) (7)

can be obtained without explicitly computing X (v). The dual-scaling algorithm does not
require X (v) to compute the step direction defined by (4), so DSDP does not compute it
unless specifically requested. This feature characterizes the algorithm and its performance.

To get closer to the central path and make further use of M, whose computation and
factorization usually dominate the computation time, DSDP generates a sequence of corrector
steps. The corrector steps compute AS~! using the current S and Ay := M~ AS~!. Since
the computation of M used previous values of S, the corrector step

1
Ajy = —Aly =A%y

is not a Newton step. A line search computes a step length, a., that improves the merit
function

éu(y) :=b"y +vindet S. (8)

Between 0 and 12 corrector steps are applied each iteration. The exact number can be
chosen heuristically based on the square of the ratio of m and the dimension of the largest
semidefinite block.

Either (y,S) or X reduces the dual potential function

U(y) == plog(z — bTy) — Indet S 9)

enough at each iteration to achieve linear convergence.

1: Set up data structures and factor A;.

2: Choose y such that S «— C — ATy € K.

3: Choose an upper bound z and a barrier parameter v.
4: for k — 0,..., knpee do

5 Monitor solution and check for convergence.

6: Compute M and AS~L.

7. Solve MA'y =b, MA"y = AS~1.

g if C —AT(y —A,y) € K then

9: Z—bly+v (A,,yTAS*1 + n)

10: Y—y, Ay — ALy, T — v.

11: end if

12 Select v.

13: Find ag to reduce ¢, and set y «+ y 4+ agA,y, S — C — ATy.
14: for kk=1,..., kky4. do

15: Compute AS™1.

16: Solve MA®y = AS~1.

17: Select v.

18: Find a. to reduce ¢, and set y « y + a Ay, S « C — ATy.
19: end for

20: end for

21: Optional: Compute X using 7, Ay, Ti.

3 Standard Form

The convergence of the algorithm assumes that both (P) and (D) have an interior feasible
region and the current solutions are elements of the interior. To satisfy these assumptions,
DSDP bounds the variables y such that | < y < u, where [,u € R™. By default, {; = —107
and u; = 107 for each i from 1 through m. Furthermore, DSDP bounds the trace of X by
a penalty parameter I' whose default value is I' = 10%. Including these bounds and their
associated Lagrange variables 2! € R™, 2% € R™, and r, DSDP solves the following pair of
problems:

(PP) minimize (C,X) + ufa® — [Ta!

subject to AX + ot — = b,
(I, X) < T,
X €K, % >0, zt > 0.
(DD) maximize bly —T'r
subject to C—Aly+1Ir = ScK,
[<y <u, r > 0.

The reformulations (PP) and (DD) are bounded and feasible, so the optimal objective values
to this pair of problems are equal. Furthermore, (PP) and (DD) can be expressed in the
form of (P) and (D).

Unless the user provides a feasible point y, DSDP uses the y values provided by the
application (usually all zeros) and increases r until C' — ATy + Ir € K. Large values of r

improve robustness, but smaller values often improve performance. In addition to bounding
X, the parameter I" penalizes infeasiblity in (D) and forces r toward zero. The nonnegative
variable r increases the dimension m by one and adds an inequality to the original problem.
The M matrix treats r separately by storing the corresponding row/column as a separate
vector and applying the Sherman-Morrison-Woodbury formula. Unlike other inequalities,
DSDP allows r to reach the boundary of the cone. Once r = 0, it is fixed and effectively
removed from the problem.

The bounds on y add 2m inequality constraints to the original problem; and, with
a single exception, DSDP treats them the same as the constraints on the original model.
One difference between these bounds and the other constraints is that DSDP explicitly
computes the corresponding Lagrangian variables ! and z* at each iteration to quantify
the infeasibility in (P). The bounds I and u penalize infeasibility in (P), force z! and z*
toward zero, and prevent numerical difficulties created by variables with large magnitude.

The solution to (PP) and (DD) is a solution to (P) and (D) when the optimal objective
values of (P) and (D) exist and are equal and the bounds are sufficiently large. DSDP
identifies unboundedness or infeasibility in (P) and (D) through examination of the solutions
to (PP) and (DD). Given parameters ep and €p,

o if 1 < ¢, |AX — bl|oo/{I, X) > €p, and bTy > 0, it characterizes (D) as unbounded
and (P) as infeasible;

o if r > ¢, and || AX — bl|oo/(I,X) < €p, it characterizes (D) as infeasible and (P) as
unbounded.

Normalizing unbounded solutions will provide an approximate certificate of infeasibility.
Larger bounds may improve the quality of the certificate of infeasibility and permit addi-
tional feasible solutions, but they may also create numerical difficulties in the solver.

4 TIteration Monitor

The progress of the DSDP solver can be monitored by using standard output printed to the

screen. The data below shows an example of this output.

Iter PP Objective DD Objective PInfeas DInfeas Nu StepLength Pnrm
0 1.00000000e+02 -1.13743137e+05 2.2e+00 3.8e+02 1.1e+05 0.00 0.00 0.00
1 1.36503342e+06 -6.65779055e+04 5.1e+00 2.2e+02 1.1e+04 1.00 0.33 4.06
2 1.36631922e+05 -6.21604409e+03 5.4e+00 1.9e+01 4.5e+02 1.00 1.00 7.85
3 5.45799174e+03 -3.18292092e+03 1.5e-03 9.1e+00 7.5e+01 1.00 1.00 17.63
4 1.02930559e+03 -5.39166166e+02 1.1e-05 5.3e-01 2.7e+01 1.00 1.00 7.58
5 4.30074471e+02 -3.02460061e+01 3.3e-09 0.0e+00 5.6e+00 1.00 1.00 11.36
11 8.99999824e+00 8.99999617e+00 1.le-16 0.0e+00 1.7e-08 1.00 1.00 7.03
12 8.99999668e+00 8.99999629e+00 2.9e-19 0.0e+00 3.4e-09 1.00 1.00 14.19

The program will print a variety of statistics for each problem to the screen.

Iter

PP Objective

DD Objective

the iteration number.

the upper bound z and objective value in (PP).

the objective value in (DD).

PInfeas the primal infeasiblity in (P) is ||z% — 2![/sc.
DInfeas the dual infeasibility in (D) is the variable r.
Nu the barrier parameter v.
StepLength the multiple of the step-directions in (P) and (D).
Pnrm the proximity to the central path: |V p-1.

5 DSDP with MATLAB

Additional help using the DSDP can be found by typing help dsdp in the directory DSDP5. X.
The command

> [STAT, y, X] = dsdp(b, AC)

attempts to solve the semidefinite program by using a dual-scaling algorithm. The first
argument is the objective vector b in (D) and the second argument is a cell array that
contains the structure and data for the constraint cones. Most data has a block structure,
which should be specified by the user in the second argument. For a problem with p cones
of constraints, AC is a p x 3 cell array. Each row of the cell array describes a cone. The first
element in each row of the cell array is a string that identifies the type of cone. The second
element of the cell array specifies the dimension of the cone, and the third element contains
the cone data.

5.1 Semidefinite Cones

If the cone j is a semidefinite cone consisting of a single block with n rows and columns in
the matrices, then the first element in this row of the cell array is the string *SDP’ and the
second element is the number n, and the third element is a sparse matrix with n(n+1)/2 rows
and m + 1 columns. Columns 1 to m of this matrix represent the constraints Ay ;,..., Ay, ;
for this block, and column m + 1 represents C}.

The square symmetric data matrices A;; and C; map to the columns of AC{j,3}
through the operator dvec(-) : R — R™"*+1/2 which is defined as
dVEC(A) = [al,l ayr2 az2 aps a3 a33 ... anm]T
In this definition, ay; is the element in row £ and column [of A. This ordering is often
referred to as symmetric packed storage format. The inverse of dvec() is dmat(-) :
R("+1)/2 _ R7*7 which converts the vector into a square symmetric matrix. Using these

operations, we obtain

A;j =dmat(AC{j,3}(:,i)), C;=dmat(AC{j,3}(:,m+1))

and
AC{j,3} =[dvec(A4i;) ... dvec(A, ;) dvec(Cj) |;

For example, the problem
Maximize Y1 + Yo

. 10 0 0 4 -1
Subject to [00] Y1 —l—[Ol]) j[—l 5}

can be solved by

>b=[111]";
>AMC=[[1.000]1>[001.0]> [4.0-1.05.01" 1;
> AC{1,1} = °SDP’;

> AC{1,2} [2]1;
> AC{1,3} = sparse(AAC);
> [STAT,y,X]=dsdp(b,AC);
> XX=dmat (X{1});

The solution y is the column vector y’> = [3 4]1°, and the solution X is a p x 1 cell
array. In this example, the solution X = [3 x 1 double] isX{1}’=[1.0 1.0 1.0 1].
Furthermore, dmat(X{1})=[11 ; 1 1 1.

Each semidefinite block can be stated in a separate row of the cell array; only the
available memory on the machine limits the number of cones that can be specified.

Each semidefinite block may, however, be grouped into a single row in the cell array.
In order to group these blocks together, the second cell entry must be an array of integers
stating the dimension of each block. The data from the blocks should be concatenated
such that the number of rows in the data matrix increases whereas the number of columns
remains constant. The following lines indicate how to group the semidefinite blocks in rows
1 and 2 of cell array AC1 into a new cell array AC2:

> AC2{1,1} = ’SDP’;
> AC2{1,2} = [AC1{1,2} AC1{2,2}];
> AC2{1,3} = [AC1{1,3}; AC1{2,3}];

The new cell array AC2 can be passed directly into DSDP. The advantage of grouping multiple
blocks together is that it uses less memory — especially when there are many blocks and
many of the matrices in these blocks are zero. The performance of DSDP, measured by
execution time, will change very little.

This distribution contains several examples files in SDPA format. A utility routine
called readsdpa(-) can read these files and put the problems in DSDP format. They may
serve as examples of how to format an application for use by the DSDP solver. Another
example can be seen in the file maxcut(-) , which takes a graph and creates an SDP
relaxation of the maximum cut problem from a graph.

5.2 LP Cones

A cone of LP variables can specified separately. For example a randomly generated LP cone
ATy < ¢ with 3 variables y and 5 inequality constraints can be specified in the following
code.

n=5; m=3;

b = rand(m,1);
At=rand(n,m);
c=rand(n,1);

Ac{1,1} = °LP’;

AC{1,2} n;

AC{1,3} = sparse([At cl);
[STAT,y,X]=dsdp(b,AC);

V V V V V V V V

Multiple cones of LP variables may be passed into the DSDP solver, but for efficiency reasons,
it is best to group them all together. This cone may also be passed to the DSDP solver as

a semidefinite cone, where the matrices A; and C are diagonal. For efficiency reasons,
however, it is best to identify them separately as belonging to the cone of "LP’ variables.

Although y variables that are fixed to a constant can be preprocessed and removed from
a model, it is often more convenient to leave them in the model. It is more efficient to identify
fixed variables to DSDP than to model these constraints as a pair of linear inequalities. The
following example sets variables 1 and 8 to the values 2.4 and —6.1, respectively.

> AC{j,1} = ’FIXED’; AC{j,2} = [1 8 1; AC{j,3} = [2.4 -6.1 1;

The corresponding variables x to these constraints may be positive or negative.

5.3 Solver Options
There are more ways to call the solver. The command
> [STAT,y,X] = DSDP(b,AC,0PTIONS)

specifies some options for the solver. The OPTIONS structure may contain any of the following
fields that may significantly affect the performance of the solver. The following options affect
the formulation of the problem:
r0 initial value for 7 in (DD). If 70 < 0, a heuristic will select
a very large number (~1el0). To improve convergence, try a
smaller value. [default -1 (Heuristic)].

zbar an upper bound Z on the objective value at the solution [de-
fault 1.0e10].

penalty penalty parameter I in (DD) that enforces feasibility in (D).
IMPORTANT: This parameter must be positive and greater
than the trace of the solution X of (P). [default 1e§].

boundy determines the bounds [and u on the variables y in (DD).
That is, —boundy =1 < y; < u = boundy for all i. [default:
leT].
The following fields in the OPTIONS structure affect the stopping criteria for the solver:
gaptol tolerance for duality gap as a fraction of the value of the
objective functions [default le-6].

maxit maximum number of iterations allowed [default 1000].
steptol tolerance for stopping because of small steps [default le-2].
pnormtol ||P(v)|| of solution should also be less than [default 1e30].

inftol the value r in (DD) must be less than this tolerance to classify
the final solution of (D) as feasible. [default 1le-8].

dual_bound Terminate the solver when it finds a feasible point of (D) with
an objective greater than this value. (Helpful in branch-and-
bound algorithms.) [default 1e+4-30].
The following fields in the OPTIONS structure affect printing:

10

print

logtime

ccC

= k to display output at each k iteration, else = 0 [default
10].

=1 to profile the performance of DSDP subroutines, else =0.
(Assumes proper compilation flags.)

add this constant the objective value. This parameter is al-
gorithmically irrelevant, but it can make the objective values
displayed on the screen more consistent with the underlying
application [default 0].

Other fields are also recognized in OPTIONS structure:

rho

dynamicrho

bigM

mu0

Ireuse

to set the potential parameter p in the function (9) to this
multiple of the conic dimension n. [default: 3] IMPORTANT:
Increasing this parameter to 4 or 5 may significantly improve
performance.

to use dynamic rho strategy. [default: 1].

if > 0, the variable r in (DD) will remain positive (as opposed
to nonegative). [default 0.

initial barrier parameter v. [default -1: use heuristic]

sets a maximum on the number of times the Schur com-
plement matrix can be reused. Larger numbers reduce the
number of iterations but increase the cost of each iteration.
Applications requiring few iterations (< 60) should consider
setting this parameter to 0. [default: 4]

For instance, the commands

OPTIONS.gaptol
OPTIONS.boundy
OPTIONS.rho = 5;

vV V V V

ask for a solution with approximately three significant digits, bound the y variables by
—1000 and 41000, and use a potential parameter p of 5 times the conic dimension. Some
of these fields, especially rho, rO, and ybound, can significantly improve performance of the

solver.

0.001;
1000;

[STAT,y,X] = DSDP(b,AC,OPTIONS) ;

Using a fourth input argument, the command

> [STAT,y,X] = DSDP(b,AC,0PTIONS,yO0);

specifies an initial solution yO0 in (D). The default starting vector is the zero vector.

5.4 Solver Performance and Statistics

The second and third output arguments return objective values for (D) and (P), respectively.
The first output argument is a structure with several fields that describe the solution of

the problem:

11

stype PDFeasible if the solutions to both (D) and (P) are feasible,
Infeasible if (D) in infeasible, and and Unbounded if (D) is
unbounded.
obj an approximately optimal objective value.
pobj objective value of (PP).
dobj objective value of (DD).
stopcode equals 0 if the solutions to (PP) and (DD) satisfy the pre-

scribed tolerances and equals nonzero if the solver terminated
for other reasons.

Additional fields describe characteristics of the solution:

tracex the trace of the solution X of (P).
r the multiple of the identity element added to C' — A7 (y) in
the final solution to make S positive definite.
mu the final barrier parameter (v).
ynorm the largest element of y (infinity norm).
boundy the bounds placed on the magnitude of each variable y.
penalty the penalty parameter I" used by the solver, which must be

greater than the trace of the variables X in (P). (see above).

Additional fields provide statistics from the solver:

iterations number of iterations used by the algorithm.
pstep the final step length in (PP)
dstep the final step length in (DD).
pnorm the final value ||P(v)].
rho the potential parameter (as a multiple of the total dimension
of the cones).
gaphist a history of the duality gap.
infhist a history of the variable r in (DD).
datanorm the Frobenius norm of C, A and b.

DSDP has also provides several utility routines. The utility derror(-) verifies that
the solution satisfies the constraints and that the objective values (P) and (D) are equal.
The errors are computed according to the the standards of the DIMACS Challenge.

12

6 Reading SDPA Files

DSDP can be used if the user has a problem written in sparse SDPA format. These exe-
cutables have been put in the directory DSDPRO0T/exec/. The file name should follow the
executable. For example,

> dsdpb truss4.dat-s

Other options can also be used with DSDP. These should follow the SDPA filename.

-gaptol <rtol>

-mu0 <mu0>
-r0 <r0>

-boundy <1e7>

-save <filename>

-y0 <filename>

-maxit <iter>

-rho <3>

—-dobjmin <dd>

-penalty <le8>

-print <1>

-bigM <0>

-dloginfo <0>

-dlogsummary <1>

to stop the problem when the relative du-
ality gap is less than this number.

to specify the initial barrier parameter v.
to specify the initial value of r in (DD).

to bound the magnitude of each variable y
in (DD).

to save the solution into a file with a format
similar to SDPA.

to specify an initial vector y in (D).

to stop the problem after a specified num-
ber of iterations.

to set the potential parameter p to this
multiple of the conic dimension n.

to add a constraint that sets a lower bound
on the objective value at the solution.

to set the penalty parameter I' for infeasi-
bility in (D).

print standard output at each k iteration.

treat the inequality > 0 in (DD) as other
inequalities and keep it positive.

to print more detailed output. Higher num-
bers produce more output.

to print detailed timing information about
each dominant computations.

13

7 Applying DSDP to Graph Problems

Within the directory DSDPROOT/examples/ is a program maxcut.c that reads a file contain-
ing a graph, generates the semidefinite relaxation of a maximum cut problem, and solves
the relaxation. For example,

> maxcut graphl

reads the graph in the file graph1 and solves this graph problem. The first line of the graph
should contain two integers. The first integer states the number of nodes in the graph, and
the second integer states the number of edges. Subsequent lines have two or three entries
separated by a space. The first two entries specify the two nodes that an edge connects.
The optional third entry specifies the weight of the node. If no weight is specified, a weight
of 1 will be assigned.

The same options that apply to reading SDPA files also apply here. Similar examples
for the Lovasz 6 problem, maximum stable set problems, minimum graph coloring problem
read also read a graph from a file, formulate the semidefinite relaxation, and solve it.

14

8 DSDP Subroutine Library

DSDP can also be used within a C application through a set of subroutines. There are
several examples of applications that use the DSDP application program interface. Within
the DSDPRO0OT/examples/ directory, the file dsdp.c is a mex function that reads data from
the Matlab environment, passes the data to the solver, and returns the solution. The file
readsdpa.c reads data from a file for data in SDPA format, passes the data to the solver,
and prints the solution. The files maxcut.c and theta.c read a graph, formulate a semidef-
inite relaxation to a combinatorial problem, and pass the data to a solver. The subroutines
used in these examples are described in this chapter. Futher documentation on the routines
and examples can be found in the HTML manual pages in DSDPRO0T/docs/dox/html/.

Each of these applications includes the header file DSDPROOT/include/dsdp5.h and links
to the library DSDPROOT/1ib/libdsdp.a. All DSDP subroutines also return an int that
represents an error code. A return value of zero indicates success, whereas a nonzero return
value indicates that an error has occurred. The documentation of DSDP subroutines in this
chapter will not show the return integer, but we highly recommend that applications check
for errors after each subroutine.

8.1 Creating the Solver

To use DSDP through subroutines, first create a solver object with
int DSDPCreate(int m, DSDP *newsolver);

The first argument in this subroutine is the number of variables in the problem. The
second argument should be the address of a DSDP variable. The DSDP class is defined as
a pointer to an internal structure that contains the state of the solver. This subroutine
will construct a new structure and point the DSDP variable to a new solver. A difference in
typeset distinguishes the DSDP software from the DSDP class. Objects of this class apply the
dual-scaling algorithm to the data.

Specify the objective function associated with these variables using the subroutine

int DSDPSetDObjective(DSDP dsdp, int i, double bi);

The first argument is the solver, and the second and third arguments specify a variable
number and the objective value b; associated with it. The variables are numbered 1 through
m, where m is the number of variables specified in DSDPCreate. The objective associated
with each variable must be specified individually. The default value is zero.

The next step is to provide the conic structure and data in the problem. These subrou-
tines will be described in the next sections.

8.2 Semidefinite Cone

To specify an application with a cone of semidefinite constraints, one can use the subroutine

int DSDPCreateSDPCone (DSDP dsdp,int nblocks,SDPCone *newsdpcone) ;

15

to create a new object that describes a semidefinite cone with one or more blocks. The first
argument is an existing semidefinite solver, the second argument is the number of blocks in
this cone, and the final argument is an address of a SDPCone variable. This subroutine will
allocate structures needed to specify the constraints and point the variable to this structure.
Multiple cones can be created for the same solver, but it is usually more efficient to group
all semidefinite blocks into the same conic structure.

All subroutines that pass data to the semidefinite cone require an SDPCone object in
the first argument. The second argument often refers to a specific block. The blocks
will be labeled from 0 to nblocks-1. The subroutine int SDPConeSetBlockSize (SDPCone
sdpcone, int blockj, int n) can be used to specify the dimension of each block and
the subroutine int SDPConeSetSparsity(SDPCone sdpcone, int blockj, int nnzmat)
can be used to specify the number of nonzero matrices A; ; in each block. These subroutines
are optional, but using them can improve error checking on the data matrices and perform
a more efficient allocation of memory.

The data matrices can be specified by any of the following commands. The choice of
data structures belongs to the user, and the performance of the problem depends upon
this choice. In each of these subroutines, the first four arguments are an SDPCone object,
the block number, the number of variable associated with it, and the number of rows and
columns in the matrix. The blocks must be numbered consecutively, beginning with the
number 0. The y variables are numbered consecutively from 1 to m. The objective matrices
in (P) are specified as constraint number 0. The data passed to the SDPCone object will be
used in the solver but not modified. The user is responsible for freeing the arrays of data it
passes to SDPCone after solving the problem.

The square symmetric data matrices A; ; and C; can be represented with a single array
of numbers. DSDP supports the symmetric packed storage format. In symmetric packaged
storage format, the elements of a matrix with n rows and columns are ordered as follows:

[a11 a1 a2 a3y az2 a3z ... Gng . (10)

In this array ay; is the element in row k and column [of the matrix. The length of this
array is n(n + 1)/2, which is the number of distinct elements on or below the diagonal.
Several routines described below have an array of this length in their list of arguments.
In this storage format, the element in row ¢ and column j, where ¢ > 7, is in element
i(i —1)/2+ j — 1 of the array.

This array can be passed to the solver by using the subroutine

int SDPConeSetADenseVecMat (SDPCone sdpcone,int blockj, int vari,
int n, double alpha, double val[], int nnz);

The first argument point to a semidefinite cone object, the second argument specifies the
block number j, and the third argument specifies the variable 7 associated with it. Variables
1,...,m correspond to matrices Ay j,..., Ay, j, whereas variable 0 corresponds to C;. The
fourth argument is the dimension (number of rows or columns) of the matrix, n. The sixth
argument is the array, and the seventh argument is the length of the array. The data array
will be multiplied by the scalar in the fifth argument. The application is responsible for
allocating this array of data and eventually freeing it. SDPCone will directly access this

16

array in the course of the solving the problem, so it should not be freed until the solver is
finished.
A matrix can be passed to the solver in sparse format by using the subroutine

int SDPConeSetASparseVecMat (SDPCone sdpcone,int blockj, int vari, int n,
double alpha, int ishift,
const int ind[], const double val[], int nnz);

In this subroutine, the first five arguments are the same as in the subroutine for dense
matrices. The seventh and eighth arguments are an array an integers and an array of
double-precision variables. The final argument states the length of these two arrays, which
should equal the number of nonzeros in the lower triangular part of the matrix. The array
of integers specifies which elements of the array (10) are included in the array of doubles.
For example, the matrix

3 20
Aij=12 0 6 (11)
06 0

could be inserted into the cone using one of several ways. If the first element in the val
array is ay,1, the first element in the ind array should be 0. If the second element in the
val array is ag 2, then the second element in ind array should be 4. When the ordering of
elements begins with 0, as just shown, the fifth argument ishift in the subroutine should
be set to 0. In general, the argument ishift specifies the index assigned to a1,;. Although
the relative ordering of the elements will not change, the indices assigned to them will range
from ishift to ishift + n(n + 1)/2 — 1. Many applications, for instance, prefer to index
the array from 1 to n(n + 1)/2, setting the index argument to 1. The matrix (11) can be
set in the block j and variable i of the semidefinite cone by using one of the routines

SDPConeSetASparseVecMat (sdpcone, j,i,3,1.0,0,indl,vall,3);
SDPConeSetASparseVecMat (sdpcone, j,1,3,1.0,1,ind2,val2,3);
SDPConeSetASparseVecMat (sdpcone, j,1i,3,1.0,3,ind3,val3,4);
SDPConeSetASparseVecMat (sdpcone, j,1,3,0.5,0,ind4,val4,3);
where
indl=[0 1 4]; vall=[3 2 6 |;
ind2=[1 2 5]; val2=[3 2 6 [;
ind3=[7 3 5 4]; val3=[6 3 0 2 J;
indd=[0 1 4]; vald=[6 4 12 J;

As these examples suggest, there are many other ways to represent the sparse matrix.
The nonzeros in the matrix do not have to be ordered, but ordering them may improve the
efficiency of the solver. SDPCone assumes that all matrices A; ; and C; that are not explicitly
defined and passed to the SDPCone structure will equal the zero matrix. Furthermore, there
exist routines SDPConeAddASparseVecMat and SDPConeAddADenseVecMat that can be used
to write a constraint matrix as a sum of multiple matrices. The arguments to these functions
match those of the corresponding SDPConeSetASparseVecMat routines.

To check whether the matrix passed into the cone matches the one intended, one can
use the subroutine

17

int SDPConeViewDataMatrix (SDPCone sdpcone, int blockj, int vari);

to print the matrix to the screen. The output prints the row and column numbers, in-
dexed from 0 to m — 1, of each nonzero element in the matrix. The subroutine int
SDPConeView (SDPCone sdpcone,int blockj) can be used to view all of the matrices in a
block.

After the DSDP solver has been applied to the data and the solution matrix X; have
been computed (see DSDPComputeX), the matrix can be accessed by using the command

int SDPConeGetXArray(SDPCone sdpcone, int blockj, double *xmat[], int *nn);

The third argument is the address of a pointer that will be set to the array containing the
solution. The integer whose address is passed in the fourth argument will be set to the
length of this array, n(n + 1)/2, for the packed symmetric storage format. Since the X
solutions are usually fully dense, no sparse representation is provided. These arrays were
allocated by the SDPCone object during DSDPSetup, and the memory will be freed by the
DSDP solver object when it is destroyed. The array used to store X; could be overwritten
by other operations on the SDPCone object. The command

int SDPConeComputeX(SDPCone sdpcone, int blockj, int n,
double xmat[], int nn);

recomputes the matrix X; and places it into the array specified in the fourth argument.
The length of this array is the fifth argument and the dimension of the block in the third
argument. The vectors y and Ay needed to compute the matrices X; are stored internally
in SDPCone object. The subroutine

int SDPConeViewX (SDPCone sdpcone, int blockj, int n, double xmat[], int nn);

can be used to print this matrix to standard output.
The dimension of each block can be found by using the routine

int SDPConeGetBlockSize (SDPCone sdpcone, int blockj, int *n);

where the second argument is the block number and the third argument is the address of
an integer variable.
The inner product of X; with C}, A; ;, and I; can be computed by using the routine

int SDPConeAddADotX (SDPCone sdpcone,int blockj, double alpha,
double xmat[], int nn, double adotx[], int mp2);

The second argument specifies which block to use, and the third argument is a scalar that
will be multiplied by the inner products. The fourth argument is the array containing X,
and the fifth argument is the length of the array. The sixth argument is an array of length
m + 2, and the seventh argument should equal m + 2, where m is the number of variables
in y. This routine will add alpha times (C}, X;) to the initial element of the array, alpha
times (A4;;, X;) to element 4 of the array, and alpha times (/;, X;) to last element of the
array.

The matrix S in (D) can be computed and copied into an array by using the command

18

int SDPConeComputeS (SDPCone sdpcone, int blockj, double c, double y[], int m,
double r, int n, double smat[], int nn);

The second argument specifies which block to use, and the fourth argument is an array
containing the variables y. The third argument is the multiple of C' to be added, and the
sixth argument is the multiple of the identity matrix to be added. The sixth argument is
the dimension of the block, and the seventh argument is an array for .S whose length is
given in the eighth argument.

Special support for combinatorial applications also exists. In particular, the subroutines

int SDPConeComputeXV(SDPCone sdpcone, int blockj, int *dpsdefinite);
int SDPConeXVMultiply(SDPCone sdpcone, int blockj,
double vi[], double v2[], int n);
int SDPConeAddXVAV(SDPCone sdpcone, int blockj, double v[], int n,
double vav[], int mp2);

support the use of randomized algorithms for combinatorial optimization. The first routine
computes a matrix V; such that X = VJVJT The second routine computes the matrix-
vector product w = Vjv, where w and v are vectors of dimension equal to the dimension
of the block. The third routine computes the vector-matrix-vector product vTAivjv for C,
Ayj,...,Apj and the identity matrix. The length of the array in the fifth argument is
m + 2 and should be set in the final argument. In these applications, use of the routine
DSDPConeComputeX may not be necessary if the full matrix is not required.

The memory required for the X; matrix can be significant for large problems. If the
application has an array of double-precision variables of length n(n + 1)/2 available for use
by the solver, the subroutine

int SDPConeSetXArray(SDPCone sdpcone,int blockj, int n,
double xmat[], int nn);

can be used to pass it to the cone. The second argument specifies the block number whose
solution will be placed into the array xmat. The third argument is the dimension of the
block. The dimension specified in the fifth argument nn refers to the length of the array.
The SDPCone object will use this array as a buffer for its computations and store the solution
X in this array at its termination. The application is responsible for freeing this array after
the solution has been found.

DSDP also supports the symmetric full storage format. In symmetric full storage format,
an n X n matrix is stored in an array of n? elements in row major order. That is, the elements
of a matrix with n rows and columns are ordered

[a171 0O ... 0 a271 ag 2 0O ... 0 aml anyn]. (12)

The length of this array is n xn. Early versions of DSDP5 used the packed format exclusively,
but this format has been added because it is more convenient for some applications. The
routines

int SDPConeSetStorageFormat (SDPCone sdpcone,int blockj, char UPLQ);
int SDPConeGetStorageFormat (SDPCone sdpcone, int blockj, char *UPLQ);

19

set and get the storage format for a block, respectively. The second argument specifies
the block number and the third argument should be *P’ for packed storage format or ’U’
for full storage format. The default value is P’. These storage formats correspond to
the LAPACK storage formats for the upper half matrices in column major ordering. All of
the above commands apply to the symmetric full storage format. One difference in their
use, however, is that the size of the arrays in the arguments should be n x n instead of
n x (n+1)/2. With the symmetric full storage format, if the first element in the val array
is a1,1, the first element in the ind array should be 0. If the second element in the val
array is ag 2, then the second element in ind array should be 8. The matrix (11) can be set
in the block j and variable ¢ of the semidefinite cone by using the routine

int SDPConeSetASparseVecMat (sdpcone,j,1,3,1.0,0,ind1,vall,3);

where
indl=[0 3 7]; vall=[3 2 6];.

8.3 LP Cone

To specify an application with a cone of linear scalar inequalities, one can use the subroutine
int DSDPCreateLPCone(DSDP dsdp, LPCone *newlpcone);

to create a new object that describes a cone with 1 or more linear scalar inequalities. The
first argument is an existing DSDP object, and the second argument is the address of an
LPCone variable. This subroutine will allocate structures needed to specify the constraints
and point the variable to this structure. Multiple cones for these inequalities can be created
for the same DSDP object, but it is usually more efficient to group all inequalities of this type
into the same structure. All subroutines that pass data to the LP cone require an LPCone
object in the first argument.

A list of n linear inequalities in (D) is passed to the object in sparse column format. The
vector ¢ € R™ should be considered an additional column of the data. (In the formulation
(P), the data A and ¢ are represented in sparse row format.)

The data is passed to the LPCone using the subroutine

int LPConeSetData(LPCone lpcone, int n,
const int nnzin[], const int row[], const double avall]);

In this case, the integer array nnzin has length m + 2, and begins with 0, and nnzin[i+1]-
nnzin[i] equals the number of nonzeros in column ¢ (i = 0,...,m) (or row i of A). The
length of the second and third array equals the number of nonzeros in A and ¢. The arrays
contain the nonzeros and the associated row numbers of each element (or column numbers
in A). The first column contains the elements of ¢, the second column contains the elements
corresponding to y1, and the last column contains elements corresponding to y,.

For example, consider the following problem in the form of (D):

Maximize 1+ Y2
Subject to 4y + 2y <6
3y + Ty2 <10
—y2 <12

20

This example has three inequalities, so the dimension of the x vector would be 3 and n = 3.
The input arrays would be as follows:

nnzin :[O 3 5 7]
row =[0120101 2]
aval =[6.0 10.0 120 4.0 3.0 20 7.0 —1.0]

An example of the use of this subroutine can be seen in the DSDPRO0T/examples/readsdpa.c.
If it is more convenient to specify the vector ¢ in the last column, consider using the
subroutine:

int LPConeSetData2(LPCone lpcone,int n,
const int ik[],const int cols[],const double vals[]);

This input is also sparse column input, but the ¢ column comes last. In this form the input
arrays would be as follows:

nnzin :[O 2 5 7]
row =[0101201 2]
aval =[40 3.0 20 70 —1.0 6.0 100 120 |

This subroutine is used in the DSDP Matlab mex function, which can be used as an example.
The subroutines

int LPConeView(LPCone lpcone);
int LPConeView2(LPCone lpcone);

can be used to view the data that has been set and verify the correctness of the data.
Multiple LPCone structures can be used, but for efficiency, it is often better to include all
linear inequalities in a single cone.

The variables s in (D) and z in (P) can be found by using the subroutines

int LPConeGetXArray(LPCone lpcone,double *xout[], int *n);
int LPConeGetSArray(LPCone lpcone,double *sout[], int *n);

In these subroutines, the second argument sets a pointer to an an array of doubles containing
the variables, and the integer in the third argument is set to the length of this array. These
array are allocated by the LPCone object, and the memory is freed when the DSDP object is
destroyed. Alternatively, the application can give the LPCone an array in which to put the
solution z of (P). This array should be passed to the cone by using the following subroutine:

int LPConeSetXVec(LPCone lpcone,double xout[], int n);

At completion of the DSDP solver, the solution x will be copied into this array xout, which
must have length n. The slack variables s may be scaled. To get the unscaled vector, pass an
array of appropriate length into the object using int LPConeGetSArray2(LPCone lpcone,
double s[], int n). This subroutine will copy the slack variables into the array.

A special type of semidefinite and LP cone contains only simple bounds on the variables
y. Corresponding to lower and upper bounds on the y variables are surplus and slack
variables in (P) with a cost. The subroutine

21

int DSDPCreateBCone (DSDP dsdp, BCone *bcone);

will create this cone from an existing DSDP object and point the BCone variable to the new
structure. The bounds on the variables can be set by using the subroutines

int BConeSetLowerBound(BCone bcone, int vari, double yi);
int BConeSetUpperBound(BCone bcone, int vari, double yi);

The first argument is the conic object, the second argument identifies a variable from 1 to
m, and the third argument is the bound. Here m is the total number of variables in the
vector y. For applications using the formulation (P), the subroutines

int BConeSetPSurplusVariable(BCone bcone, int vari);
int BConeSetPSlackVariable(BCone bcone, int vari);

may be a more convenient way to represent an inequality in (P). These commands are equiv-
alent to setting a lower or upper bound on a variable y; to zero. To improve the memory
allocation process, the application may use the subroutines int BConeAllocateBounds (
BCone bcone, int nbounds); to tell the object how many bounds will be specified. This
subroutine is optional, but it may improve the efficiency of the memory allocation. The
subroutine int BConeSetXArray(BCone, double xout[], int n) will set an array in the
cone where the cone will copy the variables x. To view the bounds, the application may
use the subroutine int BConeView(BCone bcone). To retrieve the dual variables x corre-
sponding to these constraints, one can use the subroutine int BConeCopyX(BCone bcone,
double x1[], double xul[], int m). The second and third arguments of this routine are
an array of length m, the fourth argument. This routine will set the values of this array to
the value of the corresponding variable. When no bound is present, the variable will equal
ZEro.

In some applications it may be useful to fix a variable to a number. Instead of modeling
this constraint as a pair of linear inequalities, fixed variables can be passed directly to the
solver by using the subroutine

int DSDPSetFixedVariables(DSDP dsdp, double vars[], double valsl[],
double x[], int n);

In this subroutine, the array of variables in the second argument is set to the values in
the array of the third argument. The fourth argument is an optional array in which the
solver will put the sensitivities to these fixed variables. The final argument is the length of
the arrays. Note that the values in the second argument are integer numbers from 1 to m
represented in double precision. Again, the integers should be one of 1,...,m. Alternatively,
a single variable can be set to a value by using the subroutine int DSDPFixVariable (DSDP
dsdp, int vari, double val).

8.4 Applying the Solver

After setting the data associated with the constraint cones, DSDP allocates internal data
structures and factors the data in the subroutine

int DSDPSetup(DSDP dsdp);

22

This subroutine factors the data, creates a Schur complement matrix with the appropriate
sparsity, and allocates additional resources for the solver. This subroutine should be called
after setting the data but before solving the problem. Furthermore, it should be called only
once for each DSDP object. On very large problems, insufficient memory on the computer
may be encountered in this subroutine, so the error code should be checked. The subroutine

int DSDPSetStandardMonitor (DSDP dsdp, int k);

will tell the solver to print the objective values and other information at each k iteration
to standard output. The subroutine int DSDPLogInfoAllow(int,0) will print even more
information if the first argument is positive.

The subroutine

int DSDPSolve (DSDP dsdp);

attempts to solve the problem. This subroutine can be called more than once. For instance,
the user may try solving the problem by using different initial points.
After solving the problem, the subroutine

int DSDPComputeX (DSDP dsdp) ;

can be called to compute the variables X in (P). These computations are not performed
within the solver because these variables are not needed to compute the step direction.
Each solver created should be destroyed with the command

int DSDPDestroy (DSDP dsdp) ;

This subroutine frees the work arrays and data structures allocated by the solver.

8.5 Convergence Criteria

Convergence of the DSDP solver may be defined by using several options. The precision of
the solution can be set by using the subroutine

int DSDPSetGapTolerance(DSDP dsdp, double rgaptol);

The solver will terminate if there is a sufficiently feasible solution such that the difference
between the objective values in (DD) and (PP), divided by the sum of their absolute values,
is less than the prescribed number. A tolerance of 0.001 provides roughly three digits of
accuracy, whereas a tolerance of 1.0e-5 provides roughly five digits of accuracy. The
subroutine

int DSDPSetMaxIts(DSDP dsdp, int maxits);

specifies the maximum number of iterations. The subroutine int DSDPSetDualBound (
DSDP, double) specifies an upper bound on the objective value in (D). The algorithm
will terminate when it finds a point when the variable r in (DD) is less than the prescribed
tolerance and the objective value in (DD) is greater than this number.

23

8.6 Detecting Infeasibility
Infeasibility in either (P) or (D) can be determined by using the subroutine

int DSDPGetSolutionType(DSDP dsdp, DSDPSolutionType *pdfeasible);

This command sets the second argument to an enumerated type. There are four types for
DSDPSolutionType:

e The type DSDP_PDFEASIBLE means that both (D) and (P) have feasible solutions and
their objective values are bounded.

e The type DSDP_UNBOUNDED means that (D) is unbounded and (P) is infeasible. This
type applies when the variable r < ¢, and || AX — || /trace(X) > ep. In this case,
at least one variable y; will be near its bound. The subroutine DSDPSetYBounds
can adjust these bounds if the user thinks that they are not big enough to permit
feasibility. Large bounds may create numerical difficulties in the solver, but they may
also permit feasible solutions and improve the quality of the certificate of infeasibility.
Normalizing the vector y will provide an approximate certificate of infeasibility for

(P).

e The type DSDP_INFEASIBLE means that (D) is infeasible and (P) is unbounded. This
type applies when the variable r > €, and || AX — b||c/trace(X) < ep. In this
case, the trace of the variables X in (P) will be near the bound I'. The subroutines
DSDPSetPenaltyParameter can adjust I if the user thinks that it is too small, A larger
parameter may create numerical difficulties in the solver, but it may also improve the
quality of the certificate of infeasibility. Normalizing these variables so that to have a
trace of 1.0 will provide an approximate certificate of infeasibility.

e The type DSDP_PDUNKNOWN means DSDP was unable to determine feasibility in either
solution. This type applies when the initial point for (DD) was infeasible or if the
bounds on y appear to be too small to permit a feasible solution.

The tolerance €, can be set by using the subroutine int DSDPSetRTolerance (DSDP, double).
The tolerance ep can be set using the subroutine int DSDPSetPTolerance (DSDP, double).
The subroutines int DSDPGetRTolerance (DSDP, double*) and int DSDPGetPTolerance(
DSDP, doublex) can be used to get the current tolerances.

8.7 Solutions and Statistics

The objective values in (PP) and (DD) can be retrieved by using the commands

int DSDPGetPPObjective(DSDP dsdp, double *pobj) ;
int DSDPGetDDObjective (DSDP dsdp, double *dobj);

The second argument in these routines is the address of a double-precision variable.
The solution vector y can be viewed by using the command

int DSDPGetY(DSDP dsdp, double y[], int m);

24

The user passes an array of size m where m is the number of variables in the problem. This
subroutine will copy the solution into this array.
The success of DSDP can be interpreted with the command

int DSDPStopReason(DSDP dsdp, DSDPTerminationReason *reason);

This command sets the second argument to an enumerated type. The various reasons for
termination are listed below.
DSDP_CONVERGED The solutions to (PP) and (DD) satisfy the conver-
gence criteria.

DSDP MAX_IT The solver applied the maximum number of itera-
tions without finding a solution.

DSDP_INFEASIBLE START The initial point in (DD) was infeasible.

DSDP_INDEFINITE_SCHUR Numerical issues created an indefinite Schur matrix
that prevented further progress.

DSDP_SMALL_STEPS Small step sizes prevented further progress.

DSDP_NUMERICAL_ERROR Numerical issues prevented further progress.
The subroutines

int DSDPGetBarrierParameter (DSDP dsdp, double *mu) ;

int DSDPGetR(DSDP dsdp, double *r);

int DSDPGetStepLengths(DSDP dsdp, double *pstep, double *dstep);
int DSDPGetPnorm(DSDP dsdp, double *pnorm);

provide more information about the current solution. The subroutines obtain the barrier
parameter, the variable r in (DD), the step lengths in (PP) and (DD), and a distance to
the central path at the current iteration.

A history of information about the convergence of the solver can be obtained with the
commands

int DSDPGetGapHistory(DSDP dsdp, double gaphistory[], int history);
int DSDPGetRHistory(DSDP dsdp, double rhistoryl[], int history);

These subroutines retrieve the history of the duality gap and the variable in (DD) for up
to 100 iterations. The user passes an array of double-precision variables and the length of
this array. The subroutine

int DSDPGetTraceX(DSDP dsdp, double *tracex);

gets the trace of the solution X in (P). Recall that the penalty parameter must exceed
this quantity in order to return a feasible solution from an infeasible starting point. The
subroutine

int DSDPEventLogSummary(void)

will print a summary of time spent in each cone and many of the primary computational
subroutines.

25

8.8 Improving Performance

The performance of the DSDP may be significantly improved with the proper selection of
bounds, parameters, and initial point.

The application may specify an initial vector y to (D), a multiple of the identity matrix to
make the initial matrix S positive definite, and an initial barrier parameter. The subroutine
int DSDPSetYO(DSDP dsdp, int vari, double yiO) can specify the initial value of the
variable y;. Like the objective function in (D), the variables are labeled from 1 to m.
By default the initial values of y equal 0. Since convergence of the algorithm depends on
the proximity of the point to the central path, initial points can be difficult to determine.
Nonetheless, the subroutine

int DSDPSetRO(DSDP dsdp, double r0);

will set the initial value of r in (DD). If rO0 < 0, a default value of r0 will be chosen. If
SY is not positive definite, the solver will terminate with an appropriate termination flag.
The default value is usually very large (1e10), but smaller values can significantly improve
performance.

The subroutine int DSDPSetPotentialParameter (DSDP dsdp, double rho) sets the
potential parameter p. This parameter must be greater than 1. The default value is
4.0, but larger values such as 5 or 10 can significantly improve performance. Feasibility
in (D) is enforced by means of a penalty parameter. By default it is set to 10e8, but
other values can affect the convergence of the algorithm. This parameter can be set by
using int DSDPSetPenaltyParameter (DSDP dsdp, double Gamma), where Gamma is the
large positive penalty parameter I". This parameter must exceed the trace of the solution
X in order to return a feasible solution from an infeasible starting point. The subroutine int
DSDPUsePenalty(DSDP dsdp,int yesorno) is used to modify the algorithm. By default,
the value is 0. A positive value means that the variable r in (DD) should be kept positive,
treated like other inequalities, and penalized with the parameter Gamma. The subroutine
int DSDPSetZBar (DSDP dsdp, double zbar) sets an initial upper bound on the objective
value at the solution. This value corresponds to the objective value of any feasible point
of (PP). The subroutine int DSDPSetBarrierParameter (DSDP dsdp, double muO) sets
the initial barrier parameter. The default heuristic is very robust, but performance can get
generally be improved by providing a smaller value.

DSDP applies the same Schur complement matrix for multiple linear systems. This
feature often reduces the number of iterations and improves robustness. The cost of each
iteration increases, especially when the dimension of the semidefinite blocks is of similar
dimension to or larger than the number of variables y. The subroutine

int SDPConeSetParameter (SDPCone sdpcone, DSDP dsdp);

sets an appropriate parameter based upon the dimension of the semidefinite blocks. To man-
ually set this parameter, the subroutine int DSDPReuseMatrix (DSDP dsdp, int reuse)
can set a maximum on the number of times the Schur complement matrix is reused. The
default value is 4, although the Matlab mex function and SDPA file reader set this param-
eter between 0 and 15 depending on the size of the semidefinite blocks and the number of
variables y. Applications whose semidefinite blocks are small relative to the number of vari-
ables y should probably use larger values, while applications whose semidefinite blocks have

26

size equal to or greater than the number of variables should probably set this parameter to
ZEero.

The convergence of the dual-scaling algorithm assumes the existence of a strict interior
in both (P) and (D). The use of a penalty parameter can add an interior to (D). An interior
to (P) can be created by bounding the variables y. Default bounds of -1e7 and 1e7 have
been set, but applications may change these bounds by using the subroutine

int DSDPSetYBounds(DSDP dsdp, double minbound, double maxbound) ;

The second argument should be a negative number that is a lower bound of each variable
yi, and the third argument is an upper bound of each variable. These bounds should not be
tight. If one of the variables nearly equals the bound at the solution, the solver will return
a termination code saying (D) is unbounded. To remove these bounds, set both the lower
and upper bound to zero.

8.9 Iteration Monitor

A standard monitor that prints out the objective value and other relevant information at
the current iterate can be set by using the command

int DSDPSetStandardMonitor (DSDP dsdp, int k);
A user can write a customized subroutine of the form
int (*monitor) (DSDP dsdp,void* ctx);

This subroutine will be called from the DSDP solver each iteration. It is useful for writing
a specialized convergence criteria or monitoring the progress of the solver. The objective
value and other information can be retrieved from the solver by using the commands in the
section 8.7. To set this subroutine, use the command

int DSDPSetMonitor (DSDP dsdp, int (*monitor) (DSDP,void*), void* ctx);

In this subroutine, the first argument is the solver, the second argument is the monitoring
subroutine, and the third argument will be passed as the second argument in the monitoring
subroutine. Examples of two monitors can be found in DSDPRO0T/src/solver/dsdpconverge.c.
The first monitor prints the solver statistics at each iteration, and the second monitor deter-
mines the convergence of the solver. A monitor can also be used to print the time, duality
gap, and potential function at each iteration. Monitors have also been used to stop the
solver after a specified time limit and change the parameters in the solver.

27

9 PDSDP

The DSDP package can also be run in parallel on multiple processors. In the parallel version,
the Schur complement matrix is computed and solved in parallel. The parallel Cholesky
factorization in PDSDP is performed by using SCALAPACK. The parallel Cholesky factor-
ization in SCALAPACK uses a two-dimensional block cyclic structure to distribute the data.
The blocking parameter in SCALAPACK determines how many rows and columns are in each
block. Larger block sizes can be faster and reduce the overhead of passing messages, but
smaller block sizes balance the work among the processors more equitably. PDSDP used a
blocking parameter of 32 after experimenting with several choices. Since SCALAPACK uses a
dense matrix structure, this version is not appropriate when the Schur complement matrix
is sparse.
The following steps should be used to run an application in parallel using PDSDP.

1. Install bspp. Edit DSDPROOT/make .include to set the appropriate compiler flags.

2. Install scALAPACK. This package contains parallel linear solvers and is freely available
to the public.

3. Go to the directory DSDPROOT/src/pdsdp/scalapack/ and edit Makefile to identify
the location of the DSDP and SCALAPACK libraries.

4. Compile the PDSDP file pdsdpscalapack.c, which implements the additional opera-
tions. Then compile the executable readsdpa.c, which will read an SDPA file.

A PDSDP executable can be used much like the serial version of DSDP that reads SDPA
files. Given a SDPA file such as trussi.dat-s, the command

mpirun -np 2 dsdpb trussl.dat-s -log_summary

will solve the problem using two processors. Additional processors may also be used. This
implementation is best suited for very large problems.

Use of PDSDP as a subroutine library is also similar to the use of the serial version of
the solver. The application must create the solver and conic object on each processor and
provide each processor with a copy of the data matrices, objective vector, and options. At
the end of the algorithm, each solver has a copy of the solution. The routines to set the
data and retrieve the solution are the same.

The few differences between the serial and parallel version are listed below.

1. All PDSDP programs must include the header file:
#include pdsdpbscalapack.h
2. Parallel applications should link to the DSDP library, the SCALAPACK library, and the

compiled source code in dsdpscalapack.c. Linking to the BLAS and LAPACK libraries
is usually included while linking to SCALAPACK.

3. The application should initialize and finalize MPI.

28

4. After creating the DSDP solver object, the application should call

int PDSDPUseSCALAPACKLinearSolver (DSDP dsdp) ;

5. The monitor should be set on only one processor, for example:

MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
if (rank==0) info = DSDPSetStandardMonitor (dsdp);

An example of the usage is provided in DSDPRO0T/pdsdp/ScaLAPACK/readsdpa.c. Scal-
ability of medium- and large-scale problems has been achieved on up to 64 processors. The
corrector direction does not scale well, so consider reducing the number of these steps for
large groups of processors. See [1] for more details.

Source code that uses the parallel conjugate gradient method in PETSc to solve the
linear systems is also included in the distribution.

29

10 Data Structures and Parameters

The DSDP solver computes A'y, A"y, Ayy, [|[P(v)|], (X(v),S), and other quantities using
operations on vectors, the Schur matrix, and the cones. Vector operations include sums and
inner products. Operations on the Schur matrix include inserting elements and factoring
the matrix. Objects representing a cone implement routines for computing its dual matrix
S from vy, evaluating the logarithmic barrier function, computing AS~!, and computing M.
The solver object computes M, for example, by calling the corresponding operations on
each cone and summing the results. The solver computes A’y through calls to the Schur
matrix object that can factor the matrix and solve systems of linear equations. Table 2
shows eight of the primary data structures used in DSDP, the operations they implement,
and the other objects required to implement those operations. For dense matrix structures,
DSDP uses BLAS and LAPACK to operate on the data.

The LP cone and SDP cone objects implement the same interface for cones, but the
implementation of these operations depends on whether the cone is a semidefinite cone,
linear programming cone, or another type. The solver structure operates on the cone
objects without knowing whether it is an SDP cone or another type. DSDP uses opaque
pointers and function pointers to achieve polymorphic behavior.

Table 3 summarizes the significant parameters, options, and default values. The most
important of these options is the initial variable r. By default, DSDP selects a value much
larger than required to make S € K. Computational experience indicates that large values
are more robust than smaller values. DSDP then sets the initial values of z = 1el0 and
v=(z—by+Tr)/(np,). Users can manually set Z and v, but choices better than the
defaults usually require insight into the solution. The number of corrector steps can also
significantly improve performance. In some examples, corrector steps can reduce the number
of iterations by half—although the impact in total computation time is not as significant.
Computational experience suggests that the number of corrector steps should be between
0 and 12, and the time spent in these steps should not exceed 30%.

30

Table 2: Summary of primary data structures and their functionality.

Solver: Implements an algorithm for linear and semidefinite programming.
Operations: Ay, A"y, Ay, Ay, |[P(v)|, (X(v),S), reduce v.
Implementations: Dual-Scaling Algorithm.

Instances: one.

Requires: Vector, Cone, Schur.

Vector: Represents y, AS~!, b, A'y, A"y, A,y, and other internal work vectors.
Operations: sum, inner product, norm.

Implementations: dense one-dimensional array.

Instances: about two dozen.

Schur: Represents M, the Schur complement of Newton equations.
Operations: add to row, add to diagonal, factor, solve, vector-multiply.
Implementations: sparse, dense, parallel dense.

Instances: one.

Cone: Represents data C' and A;.

Operations: check if S « C — A*y € K, Indet S, AS™!, M, X(v).
Implementations: SDP Cone, LP Cone, Bounds on y, Variable r» > 0.
Instances: three or more.

Requires: Vector, Schur.

SDP Cone requires: V Matrix, Data Matrices, S Matrix, DS Matrix.

SDP V Matrix: Represents X, S~'A4;5~!, and a buffer for C — A*y.
Operations: V « 0, V « V + ~yww?, get array.

Implementations: dense.

Instances: one per block.

SDP Data Matrix: Represents a symmetric data matrix.

Operations: V « V +~vA, (V, A), w Aw, get rank, get eigenvalue/vector.
Implementations: sparse, dense, identity, low-rank.

Instances: up to m + 1 per block.

SDP S Matrix: Represents S and checks whether X (v) > 0.

Operations: S «+ V, Cholesky factor, forward solve, backward solve, determinant.
Implementations: sparse, dense.

Instances: two per block.

SDP DS Matrix: Represents AS.
Operations: AS «— V, w «— ASwv.
Implementations: dense, sparse, diagonal.
Instances: one per block.

31

Table 3: Summary of important parameters and initial values.

r: Dual infeasibility.

Default: heuristic (large) Suggested Values: 10? — 10'?

Comments: Larger values ensure robustness, but smaller values can signficantly
improve performance.

y: Initial solution.
Default: 0 Suggested Values: Depends on data
Comments: Initial points that improve performance can be difficult to find.

pn: Bound p above by n x p, and influence the barrier parameter.

Default: 3.0 Suggested Values: 2.0 — 5.0

Comments: Smaller values ensure robustness, but larger values can significantly
improve performance.

kkpmae : Maximum number of corrector steps.
Default: 4 Suggested Values: 0 — 15
Comments: For relatively small block sizes, increase this parameter.

I': The penalty parameter r and the bound on the trace of X.
Default: 1e8. Suggested Values: 103 — 1015
Comments: Larger values suitable unless (D) is feasible but has no interior.

L,u: Bounds on the variables y.
Default: —107,107 Suggested Values: Depends on the data.
Comments: Tighter bounds do not necessarily improve performance.

z: Upper bound on (D).
Default: 100 Suggested Values: Depends on the data.
Comments: A high bound is usually sufficient.

v: Dual barrier parameter.
Default: Heuristic Suggested Values: Depends on the current solution.
Comments: The default method sets v = (z — bTy)/p.

kmaz © Maximum number of dual-scaling iterations.
Default: 200 Suggested Value: 50 — 500
Comments: Iteration counts of 20-60 are common.

n: Terminate when (z — bTy)/(|bTy| + 1) is less than 7.
Default: 1076 Suggested Values: 1072 — 1077
Comments: Many problems do not require high accuracy.

p . Either a dynamic of a fixed value can be used.

Default: Dynamic. Suggested Values: Dynamic

Comments: The fixed strategy sets p = n x p, and v = (2 — bTy)/p, but its
performance is usually inferior to the dynamic strategy.

€, ep: Classify solutions as feasible.
Default: 1078, 1074 Suggested Values: 1072 — 10710
Comments: Adjust if the scaling of the problem is poor.

32

11

Previous Versions

DSDP began as a specialized solver for combinatorial optimization problems. Over the years,
improvements in efficiency and design have enabled its use in many applications.

1997

1999

2000

2002

2004

At the University of lowa the initial version of DSDPwas released. It solved the semidef-
inite relaxations of the maximum cut problem [3].

DSDP version 2 increased functionality to address semidefinite cones with rank-one con-
straint matrices and LP constraints. It was used specifically for combinatorial prob-
lems such as minimum bisection, graph coloring, stable sets, and bound-constrained
quadratic problems.

DSDP version 3 was a preliminary implementation of a general purpose SDP solver
that addressed applications from the Seventh DIMACS Implementation Challenge on
Semidefinite and Related Optimization Problems. It ran in serial and parallel.

DSDP version 4 added new sparse data structures to improve efficiency and precision.
A Lanczos based line search and efficient iterative solver were added. It solved all
problems in the SDPLIB collection that includes examples from control theory, truss
topology design, and relaxations of combinatorial problems.

DSDP version 5 [2] featured new data structures for semidefinite constraints, a cor-
rector direction, and extensibility to structured applications in conic programming.
Existence of the central path was ensured by bounding the variables.

Acknowledgments

We thank Xiong Zhang and Cris Choi for their help in developing this code. Xiong Zhang,
in particular, was fundamental to the initial version of bspP. We also thank Hans Mittel-
mann [4] for his efforts in testing and benchmarking the different versions of the code. We
thank all of the users who have commented on previous releases and suggested improve-
ments to the software. Their contributions have made DSDP a more reliable, robust, and
efficient package.

33

References

[1] Steven J. Benson. Parallel computing on semidefinite programs. Technical Report
ANL/MCS-P939-0302, Mathematics and Computer Science Division, Argonne National
Laboratory, March 2003.

[2] Steven J. Benson and Yinyu Ye. DSDP5: Software for semidefinite programming.
Preprint ANL/MCS-P1289-0905, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, September 2005.

[3] Steven J. Benson, Yinyu Ye, and Xiong Zhang. Solving large-scale sparse semidefinite
programs for combinatorial optimization. SIAM Journal on Optimization, 10(2):443—
461, 2000.

[4] Hans D. Mittelmann. Benchmarks for optimization software, 2005.
ftp://plato.asu.edu/ftp/{sdplib.txt,sparse_sdp.txt,dimacs.txt}.

34

ftp://plato.asu.edu/ftp/{sdplib.txt,sparse_sdp.txt,dimacs.txt}

	TM-277.pdf
	Abstract
	Notation
	Dual-Scaling Algorithm
	Standard Form
	Iteration Monitor
	DSDP with MATLAB
	Semidefinite Cones
	LP Cones
	Solver Options
	Solver Performance and Statistics

	Reading SDPA Files
	Applying DSDP to Graph Problems
	DSDP Subroutine Library
	Creating the Solver
	Semidefinite Cone
	LP Cone
	Applying the Solver
	Convergence Criteria
	Detecting Infeasibility
	Solutions and Statistics
	Improving Performance
	Iteration Monitor

	PDSDP
	Data Structures and Parameters
	Previous Versions
	Acknowledgments
	References

